APPENDIX A
SPACE UTILIZATION OF LOWER LAYERS

100%

<

S 0%

c

2 60%

s

N 40%

5 0%

8 o

(% 0% 25% 50% 75%

Indexing Fullness
logi cover-L1 logi cover-L2

phy cover-L1 —phy cover-L2
phy alloc-L1 —phy alloc-L2

Fig. Al: Space Utilization in TieredHM.

Since TieredHM preallocates all layers during initialization,
and data are inserted into upper layers first and then sunk
down to lower layers, the data coverage of lower layers is
low initially and gradually increases when more data are
inserted. However, the data coverage of lower layers in the
physical NAND space quickly achieves a reasonable level.
Given that MS-SSDs have a large capacity and are cost-
effective compared to DRAM, the space utilization issue is
less of a concern.

Note that the memory address space seen by applications
(e.g., TieredHM) corresponds to the logical space exposed
by MS-SSDs. And MS-SSDs employ an internal indirection
layer (i.e., flash translation layer, FTL) that manages the
mapping from its logical space to physical NAND space
and allocates NAND pages on demand. Thus, although the
layers of TieredHM are preallocated with memory space, the
utilization of physical NAND space is proportional to the
actual data volume.

We use the insertion workload of YCSB to demonstrate
the data coverage and on-demand physical space allocation of
lower layers (i.e., L1 and L2) of TieredHM. We define logi
cover-X as the ratio of the inserted data set size to the total
capacity (logically allocated space) of the corresponding layer-
X. Similarly, we define phy cover-X as the ratio of the inserted
data set size to the physically allocated space of layer-X. We
also define phy alloc-X as the ratio of the size of physically
allocated space to the total capacity of the corresponding layer-
X. The logi cover-X and phy cover-X reflect the logical and
physical space utilization of the corresponding layer, respec-
tively. The phy alloc-X indicates how on-demand allocation
affects the physical space utilization.

As shown in Figure Al, the data coverage gradually in-
creases with the inserted data set size. In the logically allocated
space, the average data coverage of L1 and L2 is 52.3%
and 39.1%, respectively. The logical data coverage of L2 is
relatively lower since its logical space is preallocated but not
actually written with data initially. In the physically allocated
space, the average data coverage of L1 and L2 is 53.3% and
55.2%, respectively. The physical and logical data coverage of
L1 are similar since its physical space is also fully allocated
quickly after the insertion begins. In contrast, L2 keeps almost
unallocated until 25% indexing fullness. The physical data
coverage of L1 and L2 is larger than 40% when the indexing
fullness is beyond 16.7% and 30.4%, respectively. In addition,

with the aid of ODM design (migrating data in batches) and
on-demand allocation, the physical data coverage of L2 starts
from 20.9%. Note that the data coverage of L1 fluctuates
(decreases) since ODM migrates data from L1 to L2.

APPENDIX B
READ OVERHEAD OF MULTI-LAYERED STRUCTURE

10 3
o 25
E 5

6 w
) <15
g ¢ @)
< 2
3 05

0 0

0% 50%
Indexing Fullness
B TH-0S @ Cuckoo
O Level O Linear
(a) Search Latency.

10% 90% 50%
Indexing Fullness

mTH-0S @ Cuckoo

OLevel OLinear

(b) Read Amplification.
Fig. A2: Search (YCSB-C) Overhead Analysis.

10%

To gain deeper insight into the inherent overhead of multi-
layered structure in TieredHM, we exclude the optimization
effect of architectural designs (i.e., signature array in DRAM,
placing top layer in PM, and prefetching enabled inside MS-
SSD) in TieredHM, denoted as TH-OS (i.e., only indexing
structure). We compare the search performance of TH-OS
with single-layered hash schemes such as Linear and Cuckoo
Hashing and two-layered Level Hashing on sheer MS-SSD
under YCSB-C workloads.

Figure A2 shows the results. TH-OS shows 2.86X, 1.27X,
and 1.33X higher latency on average than Linear, Cuckoo, and
Level Hashing, with the RAF increasing by 2.96X, 1.23X, and
1.35X on average. The inherent search overhead of the multi-
layered structure motivates us to propose novel designs by
leveraging storage architecture. Besides, the query overhead is
acceptable compared to the huge advantage brought to write
efficiency.

APPENDIX C
DIFFERENCES IN WRITE OPERATIONS BETWEEN
TIEREDHM AND TREE STRUCTURES

While TieredHM employs a multi-layered structure and
hierarchical data movement similar to tree structures (e.g.,
LSM trees and B-trees), its write operations are essentially dis-
tinct. Trees are sorted structures which support range queries.
They leverage multi-layered structures to provide balanced
read and write performance (e.g., B-trees) or generate SSD-
friendly sequential writes (e.g., LSM trees), as well as good
scalability. To maintain specific tree structures, their write
operations require adjustments to the data structures (e.g.,
rotating, splitting, and merging nodes in B-trees) or merge-
sort (compaction) of large log structures (e.g., LSM trees). As
a comparison, TieredHM adopts a hierarchical structure with
inter-layered data movement to render write skewness among
layers while also maintaining efficient point queries within
each layer. The write operations in TieredHM avoid structural
changes and merge-sort of large log structures by restricting a
key to be inserted into limited candidate buckets indexed with
hash functions, which are more lightweight.



